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EQUATION OF STATE FOR DETONATION PRODUCTS
William C. Davis
Los Alamos National Laboratory
Los Alamos, NM 87545

ABSTRACT

An equation of state for detonation products. with the usual form
p=p(v.E), is proposed It allows independent calibration of the
adiabatic gamma and the (irineisen gamma, and gives them
forms in agreement with rece..t theoretical studies. The equation

of state is given by

[
=B E_ |
p_v!k llF(V)[ll|)(l IE'(V))}{

where F(v) drops from a finite value at small v to zero at large v,
b 1s a constant, and F'(v) 13 the specific internil energy on the
principal isentrope. Its relationshin to the polytropie gas
equeation of state p = (E/v)(v 1) s easily seen, and 1t reduces

to this form at large volume

INTRODUCTION

Studies™? of the equation ol state of detonation products using stanstical
mechanies have provided new magghts into the behavior of the products, and studies®*
of the interachion of the equations of hedrodynamies with the equation of state have
provided new constrants for the equation of state  Fxj eriments™ have shown that daua
for cahibration of an equation of state can be obtamed  Many empineal littig forms
hiwve heen proposed eirhier, but they do not represent theae new developments Here we

augpest an empincal littimg form that givea the important teatures their proper torm

A basic premae of this work has heen to aceept the fact that designers will

maodify any equation of state 1o compensate for the errors in thewr computer codens and



in their representation of the device being modeled. An equation of state form that has
the right physical properties, particularly the sound speed or adiabatic gamma, will
give reasonable results even when severely adjusted. The forms considered here have
the property that the physical properties are correctly represented. They are easy to
adjust, and detailed instructions for adjusting them are included. The underlying
physical constraints are discussed, to help users see where modification may lead to
nonphysical results. Computer codes for hydrodynainic problems need an equation of

state of the form p = p(E,v). The equations suggested here have that form.

The sitaplest equation of state that has been used successfully for detonation
products is the polytropic gas form
p={E/v)k - 1), (1)
where p is the pressure, E is the specific internal energy, v 13 the specific volume, and
k = -(v/p)lop/ov)g is the adiabatic exponent. At low density k is 1.2 or 1.3 for
ordinary detonation product gases and is equal to the ratio of the specilic heats At
high density the same form is often used, with k ~ 3, and it works fairly well at
densities near the CJ density for many explosives.  When the energy of the explosive
products is transferred to the inert components in the pressure region where k falls from

tts high value to 1ts low value, the polytropie equation of state [ails.

The polytropie equation of state can be modified to
= (E/v)k 1+ Fv) ()
where vy has the vitlue 0 at large specific volume, so the equation of state assumes s
proper form at low density, and inereases monotonically as the spectfic volume
decreases, approaching a constant value at small volume.  This simple modification
givea the proper bebavior on the principal isentrope, the isentrope through the ¢
point, but 1s not sufficiently flexible off that isentrope to fit dats such as the velocities

of overdriven detonations

The required flexability 15 achieved with the form
e I
Vo ‘I:. 1 F ) llll ) o
' ! I (V) |

where bas » constant and Fwvias the speaihie internal energy on the principal tsentrope
The paenthens multiphied by boas zero on the primerpal isentrope, and the form s tha

of () The bracket muluphed by b odecreases the vadue of Foy on agentropes above

[}



the principal isentrope, describing products that behave more like an ideal gas at a
higher temperature, and increases the value for lower isentropes. The simple form for
this term is consistent with the assumption that the region of interest [or an equation
of state for detonation products is always near the principal isentrope.

DEVELOPMENT

Now let us proceed to develop the expressions for the important physical
quantities. The Griineisen gamma

o= -3 = #(8, = CB), - L

describes the variation of temperature along an isentrope, or the separation of

isentropes with different internal energy at a constant volume. ‘The adiabatic gamma

1] ot

= 5 = p.._(_"_‘!_)l_’ = & )

Y= P ."-)v S - p (t‘!-:_) - [W (-

daply

is the non-dimensional sound speed. and describes the transport of cnergy by
compression and rarefaction waves, These two quantities are the only™* features of the
equition of state that enter directly inta the differential equations of hydrodynamics

It is importany that their behavior s properly represented.

The equation of state s
p= Bk o1 Fevy i h(l o ! ()
v V) J |

O the principal 1sentrope, where 15 - E' we have

B (k1R ) ()
and by steughtforward differentiation, using the Lact that on an wentrope difdv - py
we find that

v ; v
v o kg |l KoL F (M)



where F* = dF/dv. Notice that F’ is negative. so the last term in the expression for +°
may make v* have a maximum. Now from the definition of v we see that

dp’_  f.edv_ . [kdv _ [Fdv _ [ __dF _ ;

p /""" /" [+ s o

From the integration we obtain p’(v). and by substitution into Eq(¢) we find E'(v) as
E'(v) = p'v/(k - 1+F) . (1

If we integrate Eq(9) from a chosen volume v. to an arbitrary volume v, and substitute
the result inte Eq(10). we find

Y) vk L VF(v)dv

The polytropic gas has the exponential term equal to zero, that is, F(v) —= 0. and the
energy on the isentrope varies as an inverse power of the volume. With F(v) « 0 the
specific internal energy on the isentrope increases more rapidly as the volume s

reduced.

The same differentiation of the general equation of state gives the expression for

v(.v) everywhere as

aa 1
L* Ly ! pll':i
o) N ! ¢ l'l l) ‘s .
W) =4' ¢ M(I I'I'., ' /v B,k : )
| I
where p = p(F.v) and p' =2 p'(Fy)
Simlarly we find
YA I B T 8
and
(K v) -k [ N ) tn

Notiee here that chowe af the conatant b niakes it possable 1o choose the value of 1ot

small speaific volume independent of the value of

For shock stabii v and monotonieity of the Hugomot curve tn the pou plane we
must have

v I’ | il



On the isentrope, this can be seen to be trve from Eqs. (8) and (14). since F/(v) < 0. as
longas b > 0.

The fundamental derivative of gas dynamics®*, which measures the convexity of

isentropes and must be positive evervwhere for ordinary detonation products. is given
by
G = %['v +1 . (V/-v)(a-ylav)sl . (16)

G can be easily found by differentiating ~.
The material velocity on an isentrope is found by integrating the Riemann

equalion
du/dp = + (v/'vly)l"" (7

This equation cannot be integrated in closed form for useful choices of Fivi. It must be
integrated numerically.

‘The temperature and specific heats are not 1epresented acenrately by a simple
equation of state of the kind proposed here. The evaluation of their vialues may bhe
useful because a zero or a pole in 'T' or 'y would indicate a serious flaw 1n the equation
of state. The temperatare on an 1sentrope s found® by integrating the differential

cquation

(v/THoTfiv)g = T (1%

The specilic heat at constant volume is jfound in a similir wioy from the differennial

l'l||l;|.|.lnll1

(v/RMagfivlg =1 +1 A (Ipfrdarfop)y . (rm

where g = pv/CT The rano of spealic heats? CulCy = 1 /k) can be found

once g s known.

EXAMPLE A SIMPLE CHOICE FOR F(v)

A simple form lor F(v) that has approprate properties s
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where a, n, and v. are constants to he determined in the calibration of the equation of
state. For large v, F = 0: for small v. F = La; and F(v.) = a. F(v)is a smeared out
step function; the constant a determines the height of the siep. v. the volume where
the rise is half the total rise, and the exponent n the steepness of the rise. For use in
the expressions developed above we need the derivative of F(v). It is easy to show that

vFF= - -—_%an

@) () JF

This value can be substituted into F.qs(18) and (12) for ~.

(39

To integrate v Lo find an expression for the principal isentrope we need the value
of the integral

[}

Using the expressions developed above, we can now write the expression for the

principal isentrope as

e 0 T
p. (‘y’)lln k

In this expression, p.is a constant to be determined in the calibration. The <alue for

()

p' 18 to be substituted ito the equation of state to determine 1

Although the thermal properties of the equation of state play no part an
hydrodynaumies caleuliations, it s s mstractive to take a brief look at some of them

The temperature is obtaaned by integrating eq(18) to get

'y ) ;‘ )

T AoLtall b ()

(v)

Notwes that as v becomes very Lirge, the right hand side reduces 1o (v]v ) B e
expected value at low density Notiee adso, however, that ff b= 10t has this valoe for
Al valuen ol the density  The vidue of b, which does not affeet the pressure along the



isentrope, has a strong effect on the temperature.

It is also possible to use the expressions for p’ and T to see how pv/RT varies
along the isentrope. We find

] .a1ab/nm

p ¥y

PTVlc 5(1) +%(") ] k-1 +F (25)
! (L)"' "k-1+a -9
¢ vt‘

The values of this function are
P’y (k- D)/[2*™k-1+a) for v - x
P v = 1 forv = (26)
(k - 142a)/[2"*""(k - 14a))(v/v.) **® forv -0 .

Notice that if b = 0 the function reaches o finite value as v becomes small. and
becomes large for other values of b. It always reaches a constant value for large v. as
expected, vhere pv/RT = 1.

CALIBRATION ON THE PRINCIPAL ISENTROPE

The constraints on an equation of state are (1) the principal isentrope must pass
through the C.I pont; (2) the princinal 1sentrope must he tangent to the Ravlegh hne
at the (U1 point;  (3) the work done at a chosen truncauon volume must be sunply
correlated with the Gurney energy: (1) the work done at complete expansion must he
cqual to the total chemical energy; (H) the adiabatic gamma at Lrge expansion must be
that of the product gases when they hehave as wdeal gases.  These five constrinnts

allow the calibration ol five constants in the equation of state

Constraints (1) and (2) lead to the equations
v.[vg vy v 1) ("0
p, om0 1) ¥
where the subsenipt §oindicates vadues at the CJ pomt, so v poand » are values of

these quantities at the CJ point, py 18 the il density of the explomze and v, s



reciprocal. the initial specific volume. and D is the detonation velocity. The density p,
is known from measurement. D may be known from measurement, or may be
estimated using on¢ of several rules. I[f p; has been measured, v. may be calculated
from the equation above. More often p; is not known. In this case, v, may bhe
estimated from the empirical relationship

v = 16 + 0.8 p, (29)

or another similar relationship. The usefulness of an equation of state for most
engineering calculations is not much affected by small errors in the CJ values. The
tange:cy requirement, however, must be satisfied.

The Gurney energy is a measure of the energy available from the explosive to
drive metal. In most applications, little energy is imparted to the metal afier the
pressure has fallen to 0.1 GPa, so the desired calibration quantity is the available
energy between the CJ point and the volume at which the pressure on the isentrope 1s
0.1 (GPa. The iteration to obtain this volume exactly is tedious. and it has been found
satisfactory to assume the cutoff volume to be Tv, instead of calculating an exact
value. Figure 1 shows the Fickett-Jacobs diagram® with the arca that will correspond
to the Gurney energy shaded. The Gurney energy is obtained from a cylinder test or a
dent plate test. The cylinder at 19-mm expansion has a volume expansion of about 7;
the energy is given as Fijy. Standard practice 1s to measure the apparent wall velocity
yg in mm/ps, and  express the energy as Fiq = lujg, with units of (mm/ps)? or ki/y

The Gurney energy, with units of kJ/em?, iy

e, - Fa(MIVI[1 4 3o /(M/V)] (3

where M 18 the mass per unit length of the copper tube, usually 19.501 g/em, Vs the
volume of the tube per unit length, usually 5.067 an?/em, and py 15 the inatnd density
of the explosive.  Lower case ¢ is used hecause the upper case F is used for specific
energy, or energy per unit mass: e means energy per unit volume, and has doavensions
of pressure. [t s obtained by multiplying k- by the initial density, that s, ¢, = p}.
The Gurney energy may also be obtained from the standard dent plate test, where,
units of k1 /emy?,



e, = (dent/refdent (1 + po/p, N1 + 4p,,:/py) (31)

with dent equal to the measured dent in inches. refdent a constant equal to 0.510. and
P.es 3 constant equal to 1.250 g/cm’.

The shaded area of the Fickett-Jacobs diagram is

[E(p;:v;) = 3Pj(va - v;)] - E(ps,Tvy) (32)

where p, is the pressure on the isentrope at volume 7v,. A useful calibration rule is to
make

1.115E, = [E(p;,v;) - 3p{vo - ¥;)] - E(pz.7¥y) (33)

where the empirical factor 1.115 has been determined® from experiment. This rquation
assures that constraint (3) is approximately satisfied.

The chemical energy of the explosive is obtained by assuming the composition
of the products at expansion to one atmosphere, and calculating the energy released s
the explosive molecule transforms to those products. For ordinary CHNO explosives
the products are usunally assumed to be N,, H,0, C'O,, and €. The H,0 18 assumed to
be vapor at 100 C. The total area of the Fickett-Jacobs diagram 1s set equal to the

vhemical energy, as

o == E(p;¥;) ~ ipAve - V) (30

where Fp is the chemical energy. satisfyving the fourth constraint.  This notation s
eorrect, and E, is the energy at the initial state hefore detonation.  The usual
convention is followed here, with the energy of the products set to zero at expansion
down the principal isentrope to one atmosphere. For calibration. to get energy per unit

volunie, we write e po k.

The explosive product gases are N, [LO, €O, CO amd some sohd carbon We
assunme that a reasonable value for the adiabatic gammas obtaned with k1.4 Wath
this assumption. there are five constrainta to determine the five parameters, a k. v, e

and n of the assumed form for the equation of state

a9



To summarize, the four equations to solve simultaneously are

. =k +F, 4y —42a0 =
1 J + (k—1+F,-)G3: (33)

k-1+F. (G)"

P;i=P 113 Ty (36)
(vifve) -
poE0=k_p'_)_i1_-+—}'_,‘%P-(1'v:/Vo) (37)
v./vp)
PoEq — 1.115e, = kp-ﬂlli %.7 (38)
whers
. -n

po_sdv/v) 39
(v/v.)'+ (v/v.)™" (:39)

G = (V/V.)" F (v/v:_)"" BN
_ k-1+F, (%G-;)""" O

P =P~ I'B (v;/—v—)""; (k2

and the subscripts j and 7 on F and G indicate the volume to be used in the expression

Some values chosen for calibration input. some derived quantities. and the
values for the calibrated parameters are given in Table [. The values chosen for mput
are bel.eved to be in reasonable agreement with available experimental results, but this
paper 1s not the place for a review of the experiments  The value for k. although hsted

with the calibrated parameters, was fixed at 1.3 as stated above.

CALIBRATION OFF THE PRINCIPAL ISENTROPE

To calibrate the equation ol state off che principal 1sentrope, which really means

deternimning a value for the constant b, there must be data avanlable that sample the

10



behavior of the explosive off the principal isentrope. For some explosives, detonation
velocities for overdriven detonations have been measured”. These measurements
sample the high pressure branch of the detonation Hugoniot curve.

The detonation Hugoniot curve is given by

E -Eg=1p(vy -v) . (-43)
The equation of state is
p=5[k—l+F(V) 1+b(1-=2 ! (44)
it Bw /il

These two equation mu-t be solved simultaneously to obtaiu p(v) and E(v) un the
detonation Hugoniot «urve. A simple approach is to eliminate p from the equation of
state by using the Hugoniot relation, which then gives a quadratic equation for E. [he
solution is

r g1 ]
E = 3 {(a - 3 +-1a—,59} a- J)} (1)

where a = 2v/(vy - v). 8=k - 1L + F(1 4+ b).andr=E/Fb . The result for £ is
substituted into the eyuation of state to get p. The detonation velocity ) is obtained
from the Rayleigh line equation

5
pv .
D= q ‘_.o_._g-‘,- . (-l

The particle velocity u s obtained from the jump condition
u=Jplvy v) (17)

Fits to the diata of reference 7. shown in Figs. 2 and 3. were obtained by eve rather
than with the use of o least squares code. The values for b e given i Table T The
lowest point on the curves in Figs. 2 and 3, where there is a horizontal tangent, ix fixed
by the chowce of a value for the detonation veloeity  Fhe tangent point as fixed i the
horizontal direction by the chotwee for the CI pressure. which in turn fixes the ']
particle veloeity  Changing the constant b maves the left end of the curve wm the lugh
velocity region For these reasons, the curves do not fit the data as well as they mght

if there were freedom 1o miake them fit only these data



VA l‘\ the assumption that the detonation is really exactly a CJ detonation. it
can be shown!? by differentiating the Hugoniot curve and the Rayleigh line with respect
to initial state values, that

l|

l.a!*'

Cis

- (48)
/

with T and v evaluated at the CJ state. For PBX-9404, measured values of detonation
velocity at different densities give a value of about 0.69 for this function. The
calibration of this equation of state gives, at the CJ state, y = 2.991 and ' = 0.853.
Substituting these values into the equation above gives U.ti64 for the function. The
disagreement is in keeping with the results discussed in ref. 10 and L1, where it was
shown that the derivativee at the ('] state obtained from the simple theorv did not
agree with experiment. The fit to the velocities for overdriven detonations does not
depend on derivatives nor on the C.J assumption, and the value of I' found from them 1s

to be preferred over one found from the vanation of velocity with density.

DISCUSSION

Plots of vy and ' for PBX-2404 and LX-17 are shown in Figs. 4 and 5 The [t
for I' is monotone, while the fit for v+ has a maximum. The value for n s higher for
LX-17 han for PBX-9404, and as o result the maximum is more pronounced for 1.X.
17

The form of the function F(v). and the linear function (with parameter by for
states off the principal isentrops, were chosen to have the right number of constants (o
determine using the cahbration procedure desenihed for the usual data avaadable. If
more measurements are availabhle, then more compheated functions can be nsed  In
particular, if the equation of state were to be used as a fung form for 5 and 1
computed from o statistical mechamieal  treatment of itermolecular forees, 1he

functions could be made more complicated for . better il

In engineering use. 1 is often necessary to change the equation of state a hirtle
to reproduce experiments,  Usually adjustment of the constant used to muluply the

Gurney energy 1 Fas( 30 and (36) and then recahbrating will be safficient
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TABLE 1
Calibration Input
explosive D -m/s pj- GPa po - kg/m*  E,,- MI/kg e - Gl/in®

PBX-9404 8790 35.7 1844 1.620 10.78
LX-17 7630 26.0 1904 1.070 8.13

Derived Values

explosive  vo-m’/kg v,-m'/kg v;-mi/kg o, e, - Glfm’
PBX-9404 5423.10°% 4064~10"Y 37.96-10-* 2901 T8
LX-17 5262 .10 Y 102010 Y 36.76 <1071 3.263 5.137

Calibrated Parameters

explosive  k H] n v - m"/ku p. - GlPa h
PRX-9404 13 0.8067 1 1470 R727 10 Y 31376 062
LX-IT7 13 0.8767 . 8614 6325 10 Y LAl 0 6h
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Fig. 1. The Fickett-Jacobs diagram of the
quasistatic cycle for detonations. The total
area of this diagram is approximately equal to
the total energy of the explosive. The shaded
area is the energy related to the Gurney
energy. It represents the aseful work done by

the explonive driving an average metal system.
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Fig. 2. Diagram in D-u space showing the

data for overdriven detonation in PBX-9404
and the fit to the data uaed for calibration of
the equation of state, with b = 0.62.
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Fig. 3. Diagram in D-u space showing the
data for overdriven detonation in LX-17, and
the fit to the data used for calibration of the

equation of state with b = 0.65.
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Fig. 4. Plot of y and T va log v for PBX-9404.
The units of volume are cm®/g. The CJ point
is marked on the curve for v.
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Fig. 5. Plot of vy and T vs log v for LX-17.
The units of volume are cm?/g. The CJ point
is marked on the curve for v.
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